skip to main content


Search for: All records

Creators/Authors contains: "Cross, Emma L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Browman, Howard (Ed.)
    Abstract Experiments examining fish sensitivities to future oceanic CO2 levels have greatly expanded over past decades and identified many potentially affected traits. Curiously, data on reproductive trait responses to high CO2 are still scarce, despite their strong link to Darwinian fitness and thus to population vulnerability to ocean acidification. We conducted two rearing experiments on the first broadcast-spawning marine fish model (Atlantic silverside, Menidia menidia) to examine how long-term and novel whole life-cycle exposures to predicted future CO2 levels (∼2,000 µatm) affect laboratory spawning, temperature-specific reproductive investment, fecundity, and size distributions of maturing oocytes. At low temperatures (17°C), female body size and therefore potential fecundity (FPot, oocytes/female) slightly increased with CO2, while relative fecundity (FRel, oocytes/g female) remained unaffected. At high temperatures (24°C), high CO2 substantially reduced both FPot (−19%) and FRel (−28%) relative to control treatments. Irrespective of CO2, females at 24°C grew larger and heavier than those at 17°C, and although larger females produced larger oocytes at some developmental stages, they also had lower gonadosomatic indices and lower FRel. Our findings contrast with most previous studies and thus highlight the need to investigate reproductive impacts of increasing CO2 on multiple fish species with contrasting life history strategies. 
    more » « less
  2. null (Ed.)
    Abstract Coastal ecosystems experience substantial natural fluctuations in p CO 2 and dissolved oxygen (DO) conditions on diel, tidal, seasonal and interannual timescales. Rising carbon dioxide emissions and anthropogenic nutrient input are expected to increase these p CO 2 and DO cycles in severity and duration of acidification and hypoxia. How coastal marine organisms respond to natural p CO 2  × DO variability and future climate change remains largely unknown. Here, we assess the impact of static and cycling p CO 2  × DO conditions of various magnitudes and frequencies on early life survival and growth of an important coastal forage fish, Menidia menidia . Static low DO conditions severely decreased embryo survival, larval survival, time to 50% hatch, size at hatch and post-larval growth rates. Static elevated p CO 2 did not affect most response traits, however, a synergistic negative effect did occur on embryo survival under hypoxic conditions (3.0 mg L −1 ). Cycling p CO 2  × DO, however, reduced these negative effects of static conditions on all response traits with the magnitude of fluctuations influencing the extent of this reduction. This indicates that fluctuations in p CO 2 and DO may benefit coastal organisms by providing periodic physiological refuge from stressful conditions, which could promote species adaptability to climate change. 
    more » « less
  3. null (Ed.)
    Despite the remarkable expansion of laboratory studies, robust estimates of single species CO 2 sensitivities remain largely elusive. We conducted a meta-analysis of 20 CO 2 exposure experiments conducted over 6 years on offspring of wild Atlantic silversides ( Menidia menidia ) to robustly constrain CO 2 effects on early life survival and growth. We conclude that early stages of this species are generally tolerant to CO 2 levels of approximately 2000 µatm, likely because they already experience these conditions on diel to seasonal timescales. Still, high CO 2 conditions measurably reduced fitness in this species by significantly decreasing average embryo survival (−9%) and embryo+larval survival (−13%). Survival traits had much larger coefficients of variation (greater than 30%) than larval length or growth (3–11%). CO 2 sensitivities varied seasonally and were highest at the beginning and end of the species' spawning season (April–July), likely due to the combined effects of transgenerational plasticity and maternal provisioning. Our analyses suggest that serial experimentation is a powerful, yet underused tool for robustly estimating small but true CO 2 effects in fish early life stages. 
    more » « less